Albert, J. 2009. Bayesian Computation with R. Use R! Springer New York.\_mt7SYC.

Banerjee, S. 2003. Hierarchical Modeling and Analysis for Spatial Data. Chapman & Hall/Crc Monographs on Statistics & Applied Probability. CRC Press.

Bishop, Christopher M. 2006. Pattern Recognition and Machine Learning (Information Science and Statistics). Berlin, Heidelberg: Springer-Verlag.

Bolstad, W.M. 2010. Understanding Computational Bayesian Statistics. Cram101 Textbook Key Facts. Wiley.

Carey, Vince, Li Long, and R. Gentleman. 2019. RBGL: An Interface to the Boost Graph Library.

Csárdi, Gábor. 2019. Igraph: Network Analysis and Visualization.

Gelman, A., J.B. Carlin, H.S. Stern, D.B. Dunson, A. Vehtari, and D.B. Rubin. 2013. Bayesian Data Analysis, Third Edition. Chapman & Hall/Crc Texts in Statistical Science. Taylor & Francis.

Gelman, Andrew, and Jennifer Hill. 2007. Data Analysis Using Regression and Multilevel/Hierarchical Models. Vol. Analytical methods for social research. New York: Cambridge University Press.

Hansen, Kasper Daniel, Jeff Gentry, Li Long, Robert Gentleman, Seth Falcon, Florian Hahne, and Deepayan Sarkar. 2019. Rgraphviz: Provides Plotting Capabilities for R Graph Objects.

Hastie, Trevor, Robert Tibshirani, and Jerome Friedman. 2001. The Elements of Statistical Learning. Springer Series in Statistics. New York, NY, USA: Springer New York Inc.

Henry, Lionel, and Hadley Wickham. 2019. Purrr: Functional Programming Tools.

Højsgaard, S., D. Edwards, and S. Lauritzen. 2012. Graphical Models with R. Use R! Springer New York.

Højsgaard, Søren. 2016. GRain: Graphical Independence Networks.

———. 2017. GRim: Graphical Interaction Models.

———. 2019. GRbase: A Package for Graphical Modelling in R.

Koller, Daphne, and Nir Friedman. 2009. Probabilistic Graphical Models: Principles and Techniques - Adaptive Computation and Machine Learning. The MIT Press.

Kruschke, John. 2015. Doing Bayesian Data Analysis (Second Edition). Boston: Academic Press.

Nagarajan, Radhakrishnan, Marco Scutari, and Sophie Lebre. 2013. Bayesian Networks in R with Applications in Systems Biology. New York: Springer.

Ross, Sheldon M. 1998. A First Course in Probability. Fifth. Upper Saddle River, N.J.: Prentice Hall.

Rubin, D. B. 1987. Multiple Imputation for Nonresponse in Surveys. Wiley.

Scutari, Marco, and Robert Ness. 2019. Bnlearn: Bayesian Network Structure Learning, Parameter Learning and Inference.

Su, Yu-Sung, Ben Goodrich, and Jon Kropko. 2015. Mi: Missing Data Imputation and Model Checking.

Tierney, Nicholas. 2019. Visdat: Preliminary Visualisation of Data.

Wasserman, Larry. 2004. All of Statistics: A Concise Course in Statistical Inference. Springer Texts in Statistics. New York: Springer.

Whittaker, Joe. 2009. Graphical Models in Applied Multivariate Statistics. Wiley Publishing.

Wickham, H. 2014. Advanced R. Chapman & Hall/Crc the R Series. Taylor & Francis.

Wickham, Hadley. 2017. Tidyverse: Easily Install and Load the ’Tidyverse’.

Wickham, Hadley, Winston Chang, Lionel Henry, Thomas Lin Pedersen, Kohske Takahashi, Claus Wilke, Kara Woo, and Hiroaki Yutani. 2019. Ggplot2: Create Elegant Data Visualisations Using the Grammar of Graphics.

Wickham, Hadley, Romain François, Lionel Henry, and Kirill Müller. 2019. Dplyr: A Grammar of Data Manipulation.

Wickham, Hadley, and Garrett Grolemund. 2017. R for Data Science: Import, Tidy, Transform, Visualize, and Model Data. 1st ed. O’Reilly Media, Inc.

Wickham, Hadley, and Lionel Henry. 2019. Tidyr: Tidy Messy Data.